Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Nat Immunol ; 24(1): 186-199, 2023 01.
Article in English | MEDLINE | ID: covidwho-20244916

ABSTRACT

Most studies of adaptive immunity to SARS-CoV-2 infection focus on peripheral blood, which may not fully reflect immune responses at the site of infection. Using samples from 110 children undergoing tonsillectomy and adenoidectomy during the COVID-19 pandemic, we identified 24 samples with evidence of previous SARS-CoV-2 infection, including neutralizing antibodies in serum and SARS-CoV-2-specific germinal center and memory B cells in the tonsils and adenoids. Single-cell B cell receptor (BCR) sequencing indicated virus-specific BCRs were class-switched and somatically hypermutated, with overlapping clones in the two tissues. Expanded T cell clonotypes were found in tonsils, adenoids and blood post-COVID-19, some with CDR3 sequences identical to previously reported SARS-CoV-2-reactive T cell receptors (TCRs). Pharyngeal tissues from COVID-19-convalescent children showed persistent expansion of germinal center and antiviral lymphocyte populations associated with interferon (IFN)-γ-type responses, particularly in the adenoids, and viral RNA in both tissues. Our results provide evidence for persistent tissue-specific immunity to SARS-CoV-2 in the upper respiratory tract of children after infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Child , Pandemics , Adaptive Immunity , Palatine Tonsil , Antibodies, Viral
2.
Nature ; 612(7941): 758-763, 2022 12.
Article in English | MEDLINE | ID: covidwho-2160240

ABSTRACT

Coronavirus disease 2019 (COVID-19) is known to cause multi-organ dysfunction1-3 during acute infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with some patients experiencing prolonged symptoms, termed post-acute sequelae of SARS-CoV-2 (refs. 4,5). However, the burden of infection outside the respiratory tract and time to viral clearance are not well characterized, particularly in the brain3,6-14. Here we carried out complete autopsies on 44 patients who died with COVID-19, with extensive sampling of the central nervous system in 11 of these patients, to map and quantify the distribution, replication and cell-type specificity of SARS-CoV-2 across the human body, including the brain, from acute infection to more than seven months following symptom onset. We show that SARS-CoV-2 is widely distributed, predominantly among patients who died with severe COVID-19, and that virus replication is present in multiple respiratory and non-respiratory tissues, including the brain, early in infection. Further, we detected persistent SARS-CoV-2 RNA in multiple anatomic sites, including throughout the brain, as late as 230 days following symptom onset in one case. Despite extensive distribution of SARS-CoV-2 RNA throughout the body, we observed little evidence of inflammation or direct viral cytopathology outside the respiratory tract. Our data indicate that in some patients SARS-CoV-2 can cause systemic infection and persist in the body for months.


Subject(s)
Autopsy , Brain , COVID-19 , Organ Specificity , SARS-CoV-2 , Humans , Brain/virology , COVID-19/virology , RNA, Viral/analysis , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Virus Replication , Time Factors , Respiratory System/pathology , Respiratory System/virology
3.
Front Immunol ; 13: 845496, 2022.
Article in English | MEDLINE | ID: covidwho-1775678

ABSTRACT

Background: Severe skeletal muscle damage has been recently reported in patients with SARS-CoV-2 infection and as a rare vaccination complication. Case summary: On Apr 28, 2021 a 68-year-old man who was previously healthy presented with an extremely severe rhabdomyolysis that occurred nine days following the first dose of SARS-CoV-2 ChAdOx1 nCov-19 vaccination. He had no risk factors, and denied any further assumption of drugs except for fermented red rice, and berberine supplement. The clinical scenario was complicated by a multi organ failure involving bone marrow, liver, lung, and kidney. For the rapid increase of the inflammatory markers, a cytokine storm was suspected and multi-target biologic immunosuppressive therapy was started, consisting of steroids, anakinra, and eculizumab, which was initially successful resulting in close to normal values of creatine phosphokinase after 17 days of treatment. Unfortunately, 48 days after the vaccination an accelerated phase of deterioration, characterized by severe multi-lineage cytopenia, untreatable hypotensive shock, hypoglycemia, and dramatic increase of procalcitonin (PCT), led to patient death. Conclusion: Physicians should be aware that severe and fatal rhabdomyolysis may occur after SARS-CoV2 vaccine administration.


Subject(s)
COVID-19 , Rhabdomyolysis , Thrombocytopenia , Aged , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Humans , Male , Multiple Organ Failure/etiology , RNA, Viral , Rhabdomyolysis/etiology , SARS-CoV-2 , Vaccination/adverse effects
4.
Front Immunol ; 12: 779026, 2021.
Article in English | MEDLINE | ID: covidwho-1581330

ABSTRACT

A 26-year-old otherwise healthy man died of fulminant myocarditis. Nasopharyngeal specimens collected premortem tested negative for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Histopathological evaluation of the heart showed myocardial necrosis surrounded by cytotoxic T-cells and tissue-repair macrophages. Myocardial T-cell receptor (TCR) sequencing revealed hyper-dominant clones with highly similar sequences to TCRs that are specific for SARS-CoV-2 epitopes. SARS-CoV-2 RNA was detected in the gut, supporting a diagnosis of multisystem inflammatory syndrome in adults (MIS-A). Molecular targets of MIS-associated inflammation are not known. Our data indicate that SARS-CoV-2 antigens selected high-frequency T-cell clones that mediated fatal myocarditis.


Subject(s)
COVID-19/complications , Myocarditis/pathology , Myocarditis/virology , Systemic Inflammatory Response Syndrome/pathology , T-Lymphocytes/immunology , Adult , COVID-19/immunology , COVID-19/pathology , Humans , Male , Myocarditis/immunology , RNA, Viral/analysis , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/immunology
5.
J Thromb Haemost ; 19(12): 3139-3153, 2021 12.
Article in English | MEDLINE | ID: covidwho-1526388

ABSTRACT

OBJECTIVE: Heightened inflammation, dysregulated immunity, and thrombotic events are characteristic of hospitalized COVID-19 patients. Given that platelets are key regulators of thrombosis, inflammation, and immunity they represent prime candidates as mediators of COVID-19-associated pathogenesis. The objective of this study was to understand the contribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to the platelet phenotype via phenotypic (activation, aggregation) and transcriptomic characterization. APPROACH AND RESULTS: In a cohort of 3915 hospitalized COVID-19 patients, we analyzed blood platelet indices collected at hospital admission. Following adjustment for demographics, clinical risk factors, medication, and biomarkers of inflammation and thrombosis, we find platelet count, size, and immaturity are associated with increased critical illness and all-cause mortality. Bone marrow, lung tissue, and blood from COVID-19 patients revealed the presence of SARS-CoV-2 virions in megakaryocytes and platelets. Characterization of COVID-19 platelets found them to be hyperreactive (increased aggregation, and expression of P-selectin and CD40) and to have a distinct transcriptomic profile characteristic of prothrombotic large and immature platelets. In vitro mechanistic studies highlight that the interaction of SARS-CoV-2 with megakaryocytes alters the platelet transcriptome, and its effects are distinct from the coronavirus responsible for the common cold (CoV-OC43). CONCLUSIONS: Platelet count, size, and maturity associate with increased critical illness and all-cause mortality among hospitalized COVID-19 patients. Profiling tissues and blood from COVID-19 patients revealed that SARS-CoV-2 virions enter megakaryocytes and platelets and associate with alterations to the platelet transcriptome and activation profile.


Subject(s)
COVID-19 , Thrombosis , Blood Platelets , Humans , SARS-CoV-2 , Severity of Illness Index
6.
Sci Adv ; 7(37): eabh2434, 2021 Sep 10.
Article in English | MEDLINE | ID: covidwho-1405214

ABSTRACT

Given the evidence for a hyperactive platelet phenotype in COVID-19, we investigated effector cell properties of COVID-19 platelets on endothelial cells (ECs). Integration of EC and platelet RNA sequencing revealed that platelet-released factors in COVID-19 promote an inflammatory hypercoagulable endotheliopathy. We identified S100A8 and S100A9 as transcripts enriched in COVID-19 platelets and were induced by megakaryocyte infection with SARS-CoV-2. Consistent with increased gene expression, the heterodimer protein product of S100A8/A9, myeloid-related protein (MRP) 8/14, was released to a greater extent by platelets from COVID-19 patients relative to controls. We demonstrate that platelet-derived MRP8/14 activates ECs, promotes an inflammatory hypercoagulable phenotype, and is a significant contributor to poor clinical outcomes in COVID-19 patients. Last, we present evidence that targeting platelet P2Y12 represents a promising candidate to reduce proinflammatory platelet-endothelial interactions. Together, these findings demonstrate a previously unappreciated role for platelets and their activation-induced endotheliopathy in COVID-19.

7.
Sci Immunol ; 6(58)2021 04 07.
Article in English | MEDLINE | ID: covidwho-1172732

ABSTRACT

Patients with coronavirus disease 2019 (COVID-19) present a wide range of acute clinical manifestations affecting the lungs, liver, kidneys and gut. Angiotensin converting enzyme (ACE) 2, the best-characterized entry receptor for the disease-causing virus SARS-CoV-2, is highly expressed in the aforementioned tissues. However, the pathways that underlie the disease are still poorly understood. Here, we unexpectedly found that the complement system was one of the intracellular pathways most highly induced by SARS-CoV-2 infection in lung epithelial cells. Infection of respiratory epithelial cells with SARS-CoV-2 generated activated complement component C3a and could be blocked by a cell-permeable inhibitor of complement factor B (CFBi), indicating the presence of an inducible cell-intrinsic C3 convertase in respiratory epithelial cells. Within cells of the bronchoalveolar lavage of patients, distinct signatures of complement activation in myeloid, lymphoid and epithelial cells tracked with disease severity. Genes induced by SARS-CoV-2 and the drugs that could normalize these genes both implicated the interferon-JAK1/2-STAT1 signaling system and NF-κB as the main drivers of their expression. Ruxolitinib, a JAK1/2 inhibitor, normalized interferon signature genes and all complement gene transcripts induced by SARS-CoV-2 in lung epithelial cell lines, but did not affect NF-κB-regulated genes. Ruxolitinib, alone or in combination with the antiviral remdesivir, inhibited C3a protein produced by infected cells. Together, we postulate that combination therapy with JAK inhibitors and drugs that normalize NF-κB-signaling could potentially have clinical application for severe COVID-19.


Subject(s)
COVID-19/metabolism , Complement Activation , Epithelial Cells/metabolism , Janus Kinase 1/metabolism , Janus Kinase 2/metabolism , Lung/metabolism , MAP Kinase Signaling System , SARS-CoV-2/metabolism , COVID-19/pathology , Cell Line, Tumor , Complement C3a/metabolism , Complement Factor B/metabolism , Epithelial Cells/pathology , Humans , Lung/pathology
8.
Nat Med ; 27(5): 892-903, 2021 05.
Article in English | MEDLINE | ID: covidwho-1152866

ABSTRACT

Despite signs of infection-including taste loss, dry mouth and mucosal lesions such as ulcerations, enanthema and macules-the involvement of the oral cavity in coronavirus disease 2019 (COVID-19) is poorly understood. To address this, we generated and analyzed two single-cell RNA sequencing datasets of the human minor salivary glands and gingiva (9 samples, 13,824 cells), identifying 50 cell clusters. Using integrated cell normalization and annotation, we classified 34 unique cell subpopulations between glands and gingiva. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral entry factors such as ACE2 and TMPRSS members were broadly enriched in epithelial cells of the glands and oral mucosae. Using orthogonal RNA and protein expression assessments, we confirmed SARS-CoV-2 infection in the glands and mucosae. Saliva from SARS-CoV-2-infected individuals harbored epithelial cells exhibiting ACE2 and TMPRSS expression and sustained SARS-CoV-2 infection. Acellular and cellular salivary fractions from asymptomatic individuals were found to transmit SARS-CoV-2 ex vivo. Matched nasopharyngeal and saliva samples displayed distinct viral shedding dynamics, and salivary viral burden correlated with COVID-19 symptoms, including taste loss. Upon recovery, this asymptomatic cohort exhibited sustained salivary IgG antibodies against SARS-CoV-2. Collectively, these data show that the oral cavity is an important site for SARS-CoV-2 infection and implicate saliva as a potential route of SARS-CoV-2 transmission.


Subject(s)
COVID-19/virology , Mouth/virology , SARS-CoV-2/isolation & purification , Saliva/virology , Angiotensin-Converting Enzyme 2/analysis , Asymptomatic Infections , COVID-19/etiology , Humans , Serine Endopeptidases/analysis , Taste Disorders/etiology , Taste Disorders/virology , Virus Replication
9.
Acta Neuropathol Commun ; 8(1):101-101, 2020.
Article in English | MEDLINE | ID: covidwho-662309

ABSTRACT

We report a novel group of clinically aggressive spinal cord ependymomas characterized by Grade III histology, MYCN amplification, an absence of NF2 alterations or other recurrent pathogenic mutations, and a unique methylation classifier profile. Seven cases were found to have MYCN amplification in the course of routine mutational profiling of 552 patients with central nervous system tumors between December 2016 and July of 2019 and an eighth patient was identified from an unrelated set of cases. Methylation array analysis revealed that none of the 8 cases clustered with any of the nine previously described ependymoma methylation subgroups, and 7 of 8 formed their own tight unique cluster. Histologically all cases showed grade III features, and all demonstrated aggressive clinical behavior. These findings are presented in the context of data from three other studies describing similar cases. Therefore, a combined total of 27 MYCN amplified spinal cord ependymoma cases have now been reported in the literature, warranting their consideration as a distinctive subtype of spinal cord ependymoma (SP-EPN-MYCN) with their unique molecular characteristics and aggressive clinical behavior.

10.
Histopathology ; 77(6): 915-925, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-625485

ABSTRACT

INTRODUCTION: We describe post-mortem pulmonary histopathologic findings of COVID-19 pneumonia in patients with a spectrum of disease course, from rapid demise to prolonged hospitalisation. METHODS AND RESULTS: Histopathologic findings in post-mortem lung tissue from eight patients who died from COVID-19 pneumonia were reviewed. Immunohistochemistry (IHC) and next-generation sequencing (NGS) were performed to detect virus. Diffuse alveolar damage (DAD) was seen in all cases with a spectrum of acute phase and/or organising phase. IHC with monoclonal antibodies against SARS-CoV-2 viral nucleoprotein and spike protein detected virus in areas of acute but not organising DAD, with intracellular viral antigen and RNA expression seen predominantly in patients with duration of illness less than 10 days. Major vascular findings included thrombi in medium- and large-calibre vessels, platelet microthrombi detected by CD61 IHC and fibrin microthrombi. CONCLUSIONS: Presence of SARS-CoV-2 viral RNA by NGS early in the disease course and expression of viral antigen by IHC exclusively in the acute, but not in the organising phase of DAD, suggests that the virus may play a major role in initiating the acute lung injury of DAD, but when DAD progresses to the organising phase the virus may have been cleared from the lung by the patient's immune response. These findings suggest the possibility of a major change during the disease course of COVID-19 pneumonia that may have therapeutic implications. Frequent thrombi and microthrombi may also present potential targets for therapeutic intervention.


Subject(s)
Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Adult , Aged , Autopsy , Betacoronavirus , COVID-19 , Coronavirus Infections/mortality , Female , Humans , Immunohistochemistry , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , RNA, Viral , SARS-CoV-2
11.
EClinicalMedicine ; 24: 100434, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-614169

ABSTRACT

BACKGROUND: There is increasing recognition of a prothrombotic state in COVID-19. Post-mortem examination can provide important mechanistic insights. METHODS: We present a COVID-19 autopsy series including findings in lungs, heart, kidneys, liver, and bone, from a New York academic medical center. FINDINGS: In seven patients (four female), regardless of anticoagulation status, all autopsies demonstrated platelet-rich thrombi in the pulmonary, hepatic, renal, and cardiac microvasculature. Megakaryocytes were seen in higher than usual numbers in the lungs and heart. Two cases had thrombi in the large pulmonary arteries, where casts conformed to the anatomic location. Thrombi in the IVC were not found, but the deep leg veins were not dissected. Two cases had cardiac venous thrombosis with one case exhibiting septal myocardial infarction associated with intramyocardial venous thrombosis, without atherosclerosis. One case had focal acute lymphocyte-predominant inflammation in the myocardium with no virions found in cardiomyocytes. Otherwise, cardiac histopathological changes were limited to minimal epicardial inflammation (n = 1), early ischemic injury (n = 3), and mural fibrin thrombi (n = 2). Platelet-rich peri­tubular fibrin microthrombi were a prominent renal feature. Acute tubular necrosis, and red blood cell and granular casts were seen in multiple cases. Significant glomerular pathology was notably absent. Numerous platelet-fibrin microthrombi were identified in hepatic sinusoids. All lungs exhibited diffuse alveolar damage (DAD) with a spectrum of exudative and proliferative phases including hyaline membranes, and pneumocyte hyperplasia, with viral inclusions in epithelial cells and macrophages. Three cases had superimposed acute bronchopneumonia, focally necrotizing. INTERPRETATION: In this series of seven COVID-19 autopsies, thrombosis was a prominent feature in multiple organs, in some cases despite full anticoagulation and regardless of timing of the disease course, suggesting that thrombosis plays a role very early in the disease process. The finding of megakaryocytes and platelet-rich thrombi in the lungs, heart and kidneys suggests a role in thrombosis. FUNDING: None.

SELECTION OF CITATIONS
SEARCH DETAIL